Modeling Tsunami Sources and Their Propagation in the Atlantic Ocean for Coastal Tsunami Hazard Assessments and Inundation Mapping along the U.S. East Coast

نویسندگان

  • Stéphan Grilli
  • Annette R. Grilli
  • Babak Tehranirad
  • James T. Kirby
چکیده

Numerical simulations are performed to develop tsunami inundation maps for the U.S. East Coast (USEC), as envelopes of surface elevations caused by the probable maximum tsunamis (PMTs) in the Atlantic Ocean basin. These PMTs are triggered by various sources, identified from historical records or hypothetical, including : (i) near-field submarine mass failures (SMF) on or near the continental shelf break; (ii) an extreme hypothetical M9 seismic event occurring in the Puerto Rico Trench; (iii) a repeat of the historical 1755 M9 (Lisbon) earthquake occurring in the Madeira Tore Rise; and (iv) large scale volcanic flank collapses (80 and 450 km 3 ) of the Cumbre Vieja volcano (CVV) on La Palma, in the Canary Archipelago. Tsunamis caused by: (1) earthquakes, are obtained from the estimated coseismic seafloor deformation; (2) SMF sources, modeled as rigid slumps, are generated using the 3D non-hydrostatic model NHWAVE; and (iii) the CVV sources are modeled as subaerial flows of a heavy fluid, using a 3D Navier-Stokes model. For each source, tsunami propagation to the USEC is then modeled in a series of nested grids of increasingly fine resolution, by one-way coupling, using FUNWAVE-TVD, a nonlinear and dispersive (2D) Boussinesq model. High-resolution inundation maps have been developed based on these results, so far for about a third of the USEC. A comparison of coastal inundation from each tsunami source shows similar alongshore patterns of higher and lower inundation, whatever the initial source direction; this is due to wave focusing and defocusing effects induced by the shelf bathymetry. Once developed for the entire USEC, inundation maps will fully quantify coastal hazard from the selected PMTs and allow developing site-specific mitigation measures and evacuation plans. Besides maximum inundation, other “products” available at high-resolution are maximum momentum flux, currents, and vorticity, although these are not systematically developed as maps in this phase of work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از نرم‌افزار ComMIT در پهنه‌بندی خطر سونامی در سواحل جاسک

In the Tsunami of Dec. 26, 2004, although there was a large distance between the earthquake center of Indian Ocean and coastal cities of Iran, the Tsunami waves brought some damages in Chabahar coast. This means that if the earthquake center was closer to Iran, Iran’s coastal regions would have confronted serious danger... In the present study, we used ComMIT software (Community Model Int...

متن کامل

Numerical Modeling of Tsunami Waves Associated With Worst Earthquake Scenarios of the Makran Subduction Zone in the Jask Port, Iran

The recent studies show that the past researches may have significantly underestimated earthquake and tsunami hazard in the Makran Subduction Zone (MSZ) and this region is potentially capable of producing major earthquakes. In this study, the worst case possible earthquake scenarios of the MSZ are simulated using fully nonlinear boussinesq model to investigate tsunami hazards on the Jask Port, ...

متن کامل

Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast

We perform numerical simulations of the coastal impact of large co-seismic tsunamis, initiated in the Puerto Rican trench, both in far-field areas along the upper US East coast (and other Caribbean islands), and in more detail in the near-field, along the Puerto Rico North Shore (PRNS). We first model a magnitude 9.1 extreme co-seismic source and then a smaller 8.7 magnitude source, which appro...

متن کامل

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

Tsunami Vulnerability Mapping Using Remote Sensing and GIS Techniques: A Case Study of Kollam District, Kerala, India

Tsunamis are caused by the displacement of a large volume of water, generally in an ocean or a sea. Earthquakes, volcanic eruptions and other underwater explosions, landslides, glacier calvings, meteorite impacts and other disturbances above or below water have the potential to generate a tsunami. The coastal areas of Kollam district, the present study area was seriously affected by the catastr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017